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Background

Wireless traffic prediction is essential for efficient management of wireless
networks, e.g.,

Energy-saving in cognitive wireless networks

Design proper BS switch on/off mechanisms based on peak and
average wireless traffic

Mobile load balancing in self-organizing networks (SON)

Design proper user handover mechanisms based on predicted traffic
load.

The task of wireless traffic prediction is to learn from the historical and
current behavior of the system, and relates the past and current traffic
with the future traffic
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Characteristic of the LTE traffic
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The overall variation is complicated due to user mobility, user
behavior and diverse applications

However, regular human activities drive the wireless traffic to form
certain regular patterns
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Related work

How to find and describe the patterns?

Existing statistical time series modeling and analysis methods, e.g.,

Autoregressive integrated moving average (ARIMA)

Sinusoid superposition, based on fast Fourier transform (FFT)
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ARIMA

However, ARIMA models are unable to capture long-range dependent
characteristics
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ARIMA predicts the future mainly by using linear combination of
past information, e.g., past traffic, regression error

ARIMA could be largely influenced by the sudden peaks, results in
unstable performance.
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Sinusoid Superposition

Sinusoid superposition only can generate rigid periodic patterns according
to the main frequency components based on FFT.

0 50 100 150 200 250 300 350 400
Time (Hour)

20

30

40

50

60

P
R

B
 U

s
a
g
e
 (

%
) Real

Sinusoid superposition

Sinusoid superposition needs to manually choose main frequency
components

The coefficient parameters is based on curve fitting
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Strength of Gaussian Process

Recently, Gaussian process, which is one type of nonparametric machine
learning methods, has achieved outstanding results in various fields, which
has the ability to

capture the uncertainty and nonlinearity of traffic time series

be free from black-box operations

encode domain/expert knowledge into kernel functions

optimize the hyperparameters explicitly

However, the bottleneck of current GP methods lies in the high
computational complexity.
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Contributions

The main contributions of this paper are as follows.

The first to apply GP in wireless traffic prediction.

The first to predict traffic based on real 4G traffic data

Achieve prediction accuracy up to 97%, much higher than the existing
methods.

Exploit the Toeplitz structure, reduce the complexity of

hyperparameter learning: from O(n3) to O(n2)
inference: from O(n3) to O(n log n)

without sacrificing any prediction accuracy
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Regression model

We consider the regression model

y = f (t) + ε (1)

where

t is the input, i.e., the time index

y is the output, i.e., the traffic flow

f (·) is the underlying regression function

ε is the observation noise, assumed to be Gaussian i.i.d follow
N (0, σ2), but the noise variance σ2 is supposed to be unknown
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Prediction task

Given a training dataset S = {t, y} where

t = [t1, t2, ..., tn] contains the training inputs

y = [y1, y2, ..., yn] contains the training outputs

We aim to predict y∗ = [y∗,1, y∗,2, ..., y∗,n∗ ], whose test inputs are
t∗ = [t∗,1, t∗,2, ..., t∗,n∗ ].
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Gaussian Process Definition

Definition

A Gaussian process is a collection of random variables, any finite number
of which have (consistent) Gaussian distributions.

A real-valued Gaussian process, which is completely specified by a mean
function and covariance function (a.k.a. kernel function). Concretely,

f (t) ∼ GP(m(t), k(t, t ′;θ)) (2)

where

m(t) is the mean function, often set to zero in practice, if no prior
knowledge is available

k(t, t ′;θ) is the covariance kernel function

θ denotes the unknown hyper-parameters to be optimized
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Kernel function

The choice of kernel function is
critical to GP, for that kernels

encode prior information about
underlying data

define distinct distributive
curves

Therefore, we need to design a
proper kernel to best fit the wireless
traffic.
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Observed Patterns

In general, the 4G wireless traffic in
our dataset shows four common
patterns

1 the weekly periodic pattern

2 the daily periodic pattern
3 the dynamic deviations

irregular traffic variations

4 the residue noise

local disturbing noise, e.g.,
measurement inaccuracy
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Kernel selection

We sum four kernels to model the four observed patterns respectively

a periodic kernel function for weekly pattern:

k1(ti , tj) = σ2p1 exp

[
−

sin2
π(ti−tj )

λ1
l2p1

]
a periodic kernel function for daily pattern:

k2(ti , tj) = σ2p2 exp

[
−

sin2
π(ti−tj )

λ2
l2p2

]
a rational quadratic (RQ) kernel for dynamic deviation:

k3(ti , tj) = σ2st

[
1 +

(ti−tj )2
2αl2st

]−α
a squared exponential (SE) kernel for residue system noise:

k4(ti , tj) = σ2lt exp

[
− (ti−tj )2

2l2lt

]
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Log-likelihood function

The prediction performance of GP regression depends on not only the
kernel but also the hyper-parameters.

The log-likelihood function of the Gaussian prior is

log p(y ;θ) = −1

2

{
log |C (θ)|+ yTC−1(θ)y + n log(2π)

}
(3)

where C (θ) , K (t, t) + σ2In.

The dominant method for learning the optimal set of hyper-parameters is
via maximizing the log-likelihood function log p(y ;θ).
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Hyper-parameter Learning

Maximizing the log-likelihood function is equivalent to minimizing the
following cost function

θML = arg min
θ

g(θ) = yTC−1(θ)y + ln |C (θ)| (4)

In the GP society, this is mostly solved via gradient based algorithms, such
as LFGS-Newton or conjugate gradients, with the gradient:

∂

∂θi
g(θ) = tr

(
C−1(θ)

∂C (θ)

∂θi

)
− yTC−1(θ)

∂C (θ)

∂θi
C−1(θ)y (5)

= tr

((
C−1(θ)−ααT

) ∂C (θ)

∂θi

)
(6)

where α = C−1(θ)y .
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Inference

We can derive the posterior distribution which is also Gaussian with the
mean µ̂ and covariance matrix σ̂ as follows:

µ̂ = K (t∗, t)
[
K (t, t) + σ2In

]−1 y (7)

σ̂ = K (t∗, t∗) + σ2In∗ −K (t∗, t)
[
K (t, t) + σ2In

]−1 K (t, t∗) (8)

Note that the variance σ̂ is independent of the observed outputs y .

Therefore, the posterior distribution of a set of test outputs can then be
written as

p(y∗|D, x∗,θ) ∼ N (µ̂, σ̂) . (9)
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Computational Complexity

The inference and learning in GP requires evaluating C−1(θ) and
log |C(θ)|

The standard practice is to take the Cholesky decomposition1 of C
which requires O(n3) computations

When the dimension of y and the number of hyper-parameters to be
optimized θ is high, better strategy for parameter optimization is
sought after.

1Decompose a symmetric, positive definite matrix C into a product of a lower
triangular matrix L and its transpose, i.e. LLT = C
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Toeplitz Structure

The regularly-spaced input grid (time series) and stationary kernels give
rise to a Toeplitz structure in the covariance matrix:

T =


c0 c−1 c−2 . . . c−(n−1)
c1 c0 c−1
c2 c1 c0
...

. . .
...

cn−1 . . . c0


The Toeplitz matrix T has repetive diagonal structures, i.e.,

Ti ,j = Ti+1,j+1
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Fast Matrix Inversion

We expand the n × n Toeplitz matrix T to a (2n − 1)× (2n − 1)
circulant matrix R, whose first column of R can be written as

r = [c1, c2, . . . , cn−1, cn, cn−1, . . . , c2]

and each subsequent column of R is shifted one position from its
adjacent columns

Based on the circulant structure, the matrix inversion C−1(θ) can be
computed in O(n log n) by preconditioned conjugate gradients (PCG)
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Fast Log-Determinant

The Trench algorithm defines a parameter γi as

|Ci+1| = γi |Ci |, 1 ≤ i ≤ n.

where i indicates the order of the Toeplitz matrix C.

The computation of |Cn| can then be obtained by a recursion of n
multiplications

|Cn| =
n−1∏
i=1

γi

Based on the Trench algorithm, the log-determinant operation log |C|
can be solved in O(n2) operations.
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Structured Gaussian Process

In general, based on the Toeplitz structure,

the C−1y in training and inference can be solved in O(n log n)
operations based on preconditioned conjugate gradients (PCG)

the log |C| in hyperparamater learning can be solved in O(n2)
operations based on Trench algorithm.
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Reduced complexity

Therefore, the structured GP can reduce the complexity of

inference from O(n3) to O(n log n)

hyperparameter learning from O(n3) to O(n2)

without performance loss.
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Data Description and Pre-processing

The dataset is

hourly recorded downlink
physical resource block (PRB)
usage histories

containing 3072 base stations
in three southern cities in China

from September 7th to
September 30th, 2015

We cluster the base stations into
360 groups by K-means.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Xu Y, Xu W.J., Yin F, Cui S.G. IEEE GLOBECOM 2017 December 7th, 2017 29 / 34



Performance Metrics

We use the mean absolute percentage error (MAPE) as the performance
metric:

MAPE =
1

N

N∑
t=1

∣∣∣∣y(t)− r(t)

r(t)

∣∣∣∣× 100

where r(t) is the real PRB usage and y(t) is the predicted PRB usage.
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Result Analysis I
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The one-hour look-ahead prediction of three virtual base stations, where
TPLZ (Toeplitz) GP refers to the structured GP-based model
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Result Analysis II

We show the averaged MAPE with
prediction length varying from one
hour to ten hours, and

the GP model can achieve
prediction error from 3% to 5%

the SARIMA model can achieve
prediction error from 4% to
8.6%

the GP model can achieve
prediction error around 6.6%
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Conclusion

In this paper, we

proposed a GP-based prediction model over real 4G traffic data

selected kernels based on the observed regular and irregular patterns

leveraged the Toeplitz structure to reduce the complexity

outperformed the seasonal ARIMA and the sinusoid superposition
methods
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