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• A Scalable GP Model for Processing Big Datasets

A novel scalable GP regression model, which is parallelizable over a large number of computation units 
and does not involve any approximation essentially.

• Faster Hyper-parameter Optimization

A practical implementation with the Gauss-Seidel method, which reduces the complexity to 𝓞 𝒏𝟑/𝒌 with 
𝑘 the number of parallel computing units. 

Main Result
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❸ The block-wise matrix inverse satisfies:
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❹ The matrix derivative satisfies:
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❺ Solution of the block-wise matrix inverse:

𝑩11 = (𝑪11 − 𝑪12𝑪22
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−1,
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−1.

A Motivating ExampleRegression Model
• GP Definition

A GP is a collection of random variables, any finite 
number of which follow a Gaussian distribution. 

• GP Function

𝑓(𝒙) ∼ 𝒢𝒫(𝑚 𝒙 , 𝑘(𝒙, 𝒙′; 𝜽)),

where

- 𝒙: continuous-value input;

- 𝑚 𝒙 : mean function (zero in practice);

- 𝑘 𝒙, 𝒙′; 𝜽 : kernel function (e.g., SE, periodic).

• GP-based Regression Model

𝑦 = 𝑓 𝒙 + 𝑒,
where

- 𝑦: continuous-value output;

- 𝑒: noise (estimated independently).

Standard GP
• Standard GP Hyper-parameter Optimization

𝒫0: arg min
𝜃

𝑔 𝜃 = 𝑦𝑇𝐶−1 𝜃 𝑦 + log 𝐶 𝜃 ,

𝑠. 𝑡. 𝜃 𝜖 Θ,

where

- 𝐶 𝜃 = 𝐾 𝑋, 𝑋; 𝜃 + 𝜎2𝐼𝑛 : covariance matrix;

- 𝐾 𝑋, 𝑋; 𝜃 : kernel matrix.

• Gradient Decent (Benchmark Method)
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A Practical Implementation (Gauss-Seidel Method)

Figure 2: The  Prediction Performance.

Simulation

• Goal 

Break the problem 𝒫0 into smaller pieces that are easier to 
handle distributively without making any approximations.

• ADMM-based GP Hyper-parameter Optimization 

𝒫1: arg min
𝜽𝑖

𝑔 𝜽𝑖 ,

s. t. 𝜽𝑖−𝔃 = 𝟎, 𝜽𝑖∈ Θ, 𝑖 ∈ 𝒦,

where:

- 𝑔 𝜽𝑖 = 𝒚𝑇𝑪−1 {𝜽𝑖} 𝒚 + log|𝒚𝑇𝑪−1 {𝜽𝑖} |;

- 𝑪−1 {𝜽𝑖} : 𝑖-th block determined by 𝜽𝑖.

Remark: 𝒫1 is equivalent to 𝒫0.

• Lagrangian Function
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• ADMM Iteration
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Scalable GP

Figure 3. When updating the local hyper-parameter, say 𝜽𝑖, the 𝑖-th
local computing unit requires only one block of the full covariance 
matrix, e.g., the dark block in (a); only one block of the partial 
derivative matrix is non-zero, e.g., the dark block in (b); only one 
vertical and one horizontal slice of the full matrix inverse is needed, 
e.g., the two dark slices in (c), for gradient update.
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• What is GP？

Gaussian process (GP) model is a class of important Bayesian non-
parametric models for machine learning.

• Application

• Challenge

1) Standard GP suffers from the high complexity of hyper-
parameter optimization, which scales as 𝓞(𝒏𝟑) with 𝑛 the number 
of training samples.

2) Existing low-complex GP model reduces the complexity based 
on certain approximations, e.g., the subset-of-data (SOD) model
based on sparse GP, the Bayesian committee machine (BCM).

Figure 1. Performance of wireless traffic prediction based energy saving.

(a) Predicted Traffic by GP (b) Energy Saving Result 

Background

• Simulation Setting

- Artificially generated datasets with SE 
kernel.

- Using 10000 points as the training 
dataset to predict the next upcoming 
data point.

- Repeat 300 times (iteratively update 
the training set) to average the 
performance. 

- Run at a workstation with eight Intel 
E3 Xeon CPU cores at 3.50 GHz.

• Baseline Model

- The state-of-art robust BCM (rBCM) model.

- The standard GP model (Optimizes the GP parameters as in 𝒫0)
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